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Summary 

This report documents the findings of an attempt to model the attrition of forces 
due to atmospheric conditions. Machine-learning techniques, primarily the random 
forest algorithm, were used to explore the possibility of a correlation between 
aircraft incidents in the National Transportation Safety Board database and 
meteorological conditions. If a strong correlation could be found, it could be used 
to derive a model to predict aircraft incidents and become part of a decision support 
tool for mission planning purposes.  

While the random forest algorithm was able to discover some consistent predictors 
across a variety of data sets while classifying aircraft incidents related to weather, 
there were some concerns regarding the error rate in the final result of the 
classification process. This report documents the efforts to define a model and 
provide lessons learned toward future attempts to refine the results and generate a 
model that addresses the attrition of forces due to atmospheric conditions using 
machine-learning techniques. 
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1. Introduction 

Each year, the United States faces billions of dollars in damages and numerous 
deaths due weather events.1 Specific to Army operations, degraded visual 
environments have been the primary contributing factor to a majority of Army 
aviation mishaps during the past decade.2 A known challenge to Department of 
Defense operations, quantifying potential losses due to combinations of geographic 
conditions and atmospheric effects in theater is critical to inform decision makers 
conducting combat and noncombat operations.  

This issue became relevant in October 2015, when a Joint Land Attack Cruise 
Missile Defense Elevated Netted Sensor System (JLENS) aerostat broke loose from 
Aberdeen Proving Grounds and was widely reported by the media as it traveled 
freely, dragging 6700 ft of tether for 3 h, causing power outages as the tether 
damaged power lines. The blimp finally crashed in Pennsylvania, and the future of 
the program was put in jeopardy following the incident.3 This study attempts to 
resolve the issue of predicting what conditions would have resulted in the JLENS 
aerostat breaking loose and preventing such disasters in the future. 

In general, this project intended to determine what atmospheric conditions 
contribute to aircraft losses while generating a model that will allow projected 
losses to be estimated given forecast data as input. Such information can be 
provided at the tactical operations center level to inform unit commanders, 
potentially improving mission success and unit survivability. 

Initially, the focus for this project was to perform a feasibility study on the 
availability of data involved in events resulting in the loss of aerostats. However, 
insufficient data existed to create a significant determination for this study. Instead, 
a sizable database involving aircraft accidents from the National Transportation 
Safety Board (NTSB) was selected as a proof of concept due to its vast number of 
data points.  

While this report does note some trends associated with temperature and dew point, 
there are some concerns about the error rates related to classification, and thus a 
model was not developed from the results. However, this technical report will serve 
as discussion of lessons learned during this process and as documentation of efforts 
to project aircraft losses using machine-learning techniques. 
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2. Methods, Assumptions, and Procedures 

2.1 Data Collection 

To obtain a sizable number of data points, the NTSB’s Aviation and Accident 
Database was used as the data source for civilian aviation incidents. The NTSB 
provides this data in the form of Access databases, which can be broken down by 
date, type/make/model of aircraft involved, injuries, and so on.4 The database 
included incidents from January 1982 through October 2015. To narrow down the 
data sets, queries were formatted to create separate data sets for helicopters and 
airplanes, while selectively requesting the event IDs, descriptions of events, light 
conditions, temperature, dew point, wind direction, wind velocity, gusts, and 
altimeter. Queries developed for the collection of these data sets are presented in 
the Appendix. 

To run the random-forest classification algorithm on this data, we had to distinguish 
a “response” variable that categorizes the event incident as occurring due to 
weather/environmental conditions or not. The “finding_description” field was 
searched for weather-related keywords using an Excel statement, and each record 
was marked as a response “x” for weather-related incidents and “N” for 
nonweather-related incidents.  

An example of the resulting data is shown in Fig. 1: 

 

Fig. 1 Spreadsheet containing aircraft data from NTSB Access database 

Data were broken up into several different categories to observe the impacts of each 
parameter on the results. For both airplane and helicopter records, the data sets were 
divided in the following ways: 



 

Approved for public release; distribution is unlimited. 
3 

• Gusts included or excluded 

• 400 trees or 500 trees 

• Gusts excluded; no altimeter and/or light conditions parameter; 500 trees 

Gusts were excluded from the data sets due to gust data being rarely reported, and 
this results in an incomplete and thus unusable record. By excluding the gust data 
as a requirement, we kept an additional 4452 complete records for airplanes and 
500 additional helicopter records. Additionally, we compared the results of using 
500 trees versus 100 fewer trees. Based on some of the results of the previous 
entries, a final data set was created in an attempt to remove a parameter that could 
have added nonweather-related parameters in the data set. Thus, altimeter was 
removed while keeping as many records possible by excluding gusts.  

For the helicopter data set, light conditions seemed to become highlighted as a most 
valuable predictor (MVP). While this is an important factor that should be 
considered in a model, we wanted to give other weather-related parameters an 
opportunity to become an MVP, and tried a final data set that included no gusts for 
the highest quantity of records, no altimeter, and no light condition.  

2.2 Random Forest Implementation 

This project uses the ‘randomForest’ R statistics-oriented language package, 
originally developed by Leo Breiman and Adele Cutler and ported for R by Andy 
Liaw and Matthew Wiener.5 The R source code that uses the randomForest package 
was written by COL John R Olson (Ret) and used in collaboration with the Human 
Vulnerability Forecasting project led by Jeffrey O Johnson.6 The randomForest 
implementation was chosen for its renowned accuracy and applicability for 
classification and regression problems that this topic relies on.7  

For each of the runs, the randomForest implementation was modified to use 
different parameters and data sets. Each data set was modified to support each of 
the parameters drawn from the NTSB database and the desired data set required. 
Data were cropped only to include specific parameters and the response variable, 
as shown in Fig. 2. 
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Fig. 2 Data input for random forest 

In each random forest execution, the importance variable was set to “TRUE”, 
allowing us to obtain a variable importance measure, as defined by the random 
forest package.5 The variable importance plot and importance values were then 
requested for each data set.  

2.3 Random Forest Output 

For each data set, our classification random-forest implementation output the 
following information: 

• Type of random forest 

• Number of trees 

• Number of variables tried at each split 

• Out-of-bag error (OOB) estimate 

• Confusion matrix 

• Variable importance plot 

• Table of variable importance data 

For each of the cases, we used classification models, and the number of variables 
tried remained at 2, meaning we used 2 random features to grow a single tree. We 
attempted to use the standard number of trees (400–500) to give us some variation 
of the impacts of using more or less trees on the number of parameters involved. A 
large number of trees was chosen to increase the likelihood of an accurate error 
estimate.8 

The OOB error provides an estimate of errors from the random-forest algorithm 
and allows a glance of the performance of the algorithm on that particular data set. 
When the algorithm starts, the bootstrap training sample omits a third of the cases. 
These OOB cases are put back into their tree, which is tested to measure the 
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decrease in estimated margins and indicates whether or not the variable is 
important.9 This allows observers to decide whether to give credence to the MVPs 
that have been selected by the algorithm.  

The confusion matrix provides another means for determining the veracity of the 
result by allowing us to see the predicted response against the actual response from 
the data set. The confusion matrices listed in the Appendix have columns listed for 
the predicted events (“N” for nonweather events and “x” for weather events) and 
the error rate for that class. The rows are labeled for the actual occurrence of those 
events. Thus, for every row–column combination we determined how many 
predictions were accurately classified versus how many were incorrectly classified. 
A confusion matrix describes the actual versus predicted values. The N row is the 
actual number of nonweather events, and the x row is the actual number of weather-
related events. The N column is the predicted nonweather events, while the x 
column is the predicted weather events. Thus, the principal diagonal (N,N and x,x) 
represents the number of accurately predicted nonweather and weather events. 

In Table 1, the N column demonstrates that of the 5589 records there were 5066 
(3963 + 1103) total nonweather events, and the x column shows there were 523 
(260 + 263) weather-related events. Of the 5066 nonweather related events, 3963 
were predicted accurately. Similarly, of the 523 weather-related events, 263 were 
predicted accurately. 

Table 1 Example confusion matrix 

 N x class.error 
N 3963 260 0.06156761 
x 1103 263 0.80746706 

The variable importance plot describes which parameters were determined to be the 
most successful among them. For each variable importance plot, the variable 
importance measure has also been provided, and more details about the plotted 
values are described in Fig. 3. The results of this plot should be weighed against 
the error estimates previously mentioned.  
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Fig. 3 Example variable importance plot 

The variable importance measures in Table 2 provide detailed data on each of the 
predictors and the measure of importance as predictors. They do this by determining 
the increase of the OOB error estimate changed when a particular variable is used.8 
This table plots the raw importance scores for the parameter for weather (x) and 
nonweather (N) event classes, the Mean Decrease Gini and Mean Decrease 
Accuracy, which in addition to the OOB error estimate provides us with an estimate 
of the performance of a variable.  

Table 2 Example variable importance measures 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 11.840187 23.8492606 23.54195 78.80947 
wx_temp 56.976605 –8.3942168 55.818573 377.49762 

wx_dew_pt 48.086505 –15.8939562 41.730455 375.30625 
wind_dir_deg 1.173042 2.093035 2.136593 378.12715 
wind_vel_kts 29.285381 41.6917538 45.632717 338.2876 

altimeter 18.951875 –0.4434568 16.739668 443.92041 

The raw variable importance scores provide some scores showing how much each 
variable contributed to the classification of that variable. The Mean Decrease Gini 
measure is the “sum of all decreases in the forest due to a given variable, normalized 
by the number of trees”9 and gives a total decrease in node impurities from splitting 
on that variable. When interpreting the Mean Decrease Gini, the larger the value, 
the purer the variable. The Mean Decrease Accuracy value will use the OOB 
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samples that were omitted in bootstrapping to determine the importance of the 
variable as it contributes to the OOB error. The higher the Mean Decrease 
Accuracy, the more important the variable.7 In Table 2 , we can see each variable’s 
performance for classification of each nonweather and weather-related classes, the 
mean decrease accuracy and mean decrease Gini for each variable. In Table 2, we 
can see that the Mean Decrease Accuracy is the highest for wx_temp, indicating 
that it performed well with few contributions to the error rate. The Mean Decrease 
Gini is the highest for altimeter, indicating that it is the purest predictor.  

3. Results and Discussion 

As described in Section 2.3, the results depend primarily on the OOB error rates, 
Mean Decrease Gini, and Mean Decrease Accuracy. For each of the data sets, the 
data have been provided in the Appendix. Here, we broadly discuss some of the 
final output used to interpret the results. As discussed previously, the higher the 
Mean Decrease Gini and Mean Decrease Accuracy, the more accurate the results. 
The OOB error rates allow for a mean prediction error on the bootstrap training 
samples.  

In this report, we compared the following parameters: 

• Light conditions (light_cond) 

• Temperature (wx_temp) 

• Dew point (wx_dew_pt) 

• Wind direction (wind_dir_deg) 

• Wind velocity (wind_vel_kts) 

• Wind gusts (gust_kts) 

• Altimeter  

The results were divided by the adjustments made in the parameters, as this would 
significantly change the number of events available for classification. As shown in 
Table 3, when gusts were included, there were only 1138 airplane events that 
reported gusts. Meanwhile, when gusts were excluded as a required parameter we 
had more-complete data records to choose from, resulting in 5590 events to 
consider. As demonstrated in Table 3, the OOB error rates dropped significantly 
when more data became available, although they still had approximately 24% error 
rates. 
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Table 3 Summary of results on airplane data set 

Parameter No. of events No. of trees 
OOB error 

rates 
(%) 

MVPs 

No gusts 5590 400 24.23 Temperature, 
altimeter 

No gusts 5590 500 24.39 Temperature, 
altimeter 

Include gusts 1138 400 40.72 Gusts, altimeter 
Include gusts 1138 500 41.42 Gusts, altimeter 
No gusts, no 
altimeter 5590 500 25.28 Temperature, 

wind direction 
Notes: MVP = most valuable predictor; OOB = out of bag.  

In the results shown in Table 3, the MVPs often resulted in temperature and 
altimeter when gusts were excluded. When gusts were included, altimeter and gusts 
are the MVPs. However, as previously noted, the OOB error rate was also much 
higher. For all of these data sets, attempts to use both 400 and 500 trees were tried, 
and this resulted in a small decrease in OOB error rates.  

In all of these outcomes, we saw that the outstanding MVP was the altimeter. While 
this is an important factor, we wanted to see, with altimeter removed, if another 
environmental parameter would result and what impact this would have on the error 
rates. For this case, we chose to stay with 500 trees and the largest data set without 
gusts. Once altimeter was removed, the OOB error rates increased slightly, but the 
wind direction replaced altimeter as an MVP. Figure 4 shows the performance of 
each of the OOB error rates for each of the airplane data sets. As previously 
discussed, the increase in OOB error rates is especially notable in the data sets 
including gusts, while the other data sets perform relatively well. 

 
Fig. 4 OOB estimate of error rates for airplane data sets 
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With the helicopter data set there was a significant reduction in the number of 
available events for classification, as shown in Table 4. Without gusts, a maximum 
of 628 records was found and only 128 records including gusts. While the error 
rates did relatively well (around 20%) with 628 records, they rose 40%–42% with 
128 records. For the no-gust data sets, the temperature and dew point remained the 
MVPs. However, when gusts were included, light conditions and wind direction 
became the MVPs instead, keeping in mind the increase in OOB errors (as shown 
in Fig. 5) and the striking reduction of records available.  

While altimeter was not a factor in these MVPs, we attempted to try the same 
parameter changes performed on the airplane data sets and observe the MVPs and 
error rates when altimeter was no longer a factor, which resulted in dew point being 
a clear MVP and a negligible difference in the OOB error rates (Fig. 5). Meanwhile, 
we did observe light conditions to be a factor when gusts were included; so when 
excluded, temperature and dew point became MVPs while also seeing a negligible 
difference in the error rates.  

Table 4 Summary of results on helicopter data set 

Parameter No. of 
trees 

No. of 
events 

OOB error rates 
(%) MVPs 

No gusts 400 628 20.57 Temperature, 
dew point 

No gusts 500 628 20.1 Temperature, 
dew point 

Include gusts 400 128 42.52 
Light 
conditions, 
wind direction 

Include gusts 500 128 40.94 
Light 
conditions, 
wind direction 

No gusts, no 
altimeter 500 628 20.41 Dew point 

No gusts, no 
altimeter, no 
light condition 

500 628 19.94 Temperature, 
dew point 
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Fig. 5 OOB estimate of error rates for helicopter data sets 

4. Conclusions 

Across the most accurate data sets, we consistently saw temperature and dew point 
as factors that could help classify these data sets. However, in all cases, the error 
rate was significant, typically around 20% in the best cases. While this does 
demonstrate some interesting results that could contribute to future models, it does 
not necessarily indicate that this is an accurate outcome and that a model should be 
derived from the results. When the considerations of safety are a concern, a low 
error rate is a top priority.  

What we can derive from this work is the possibility that should more data become 
available and more-consistent weather parameters be reported with aircraft 
incidents, the better the results will be, and a reliable model can be derived from 
the results. The best scenarios included over 4000 records, while the highest error 
rates included a fraction of that data.  

Future work is required to develop an accurate model for forecasting aircraft 
incidents. This might include finding larger and consistent data sets that report 
weather in as many weather parameters as possible. An attempt to supplement the 
data used in this report could include mining and integration of data from weather 
stations nearest the incident sites/dates/times in the NTSB records including 
parameters that were otherwise missing. Additionally, using random forest’s 
regression methods might be useful in an attempt to forecast the events rather than 
classify them.  
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Appendix. Database Queries and Random Forest Output 
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Helicopter Access Query: 
SELECT DISTINCT FINDINGS.EV_ID, FINDINGS.FINDING_DESCRIPTION, 
EVENTS.LIGHT_COND, EVENTS.WX_TEMP, EVENTS.WX_DEW_PT, 
EVENTS.WIND_DIR_DEG, EVENTS.WIND_VEL_KTS, EVENTS.GUST_KTS, 
EVENTS.ALTIMETER 
FROM FINDINGS, EVENTS, AIRCRAFT 
WHERE (((FINDINGS.EV_ID)=[AIRCRAFT].[EV_ID] AND 
(FINDINGS.EV_ID)=[EVENTS].[EV_ID]) AND ((AIRCRAFT.ACFT_CATEGORY) LIKE 
'HELI')); 
 
Airplane Access Query:  

SELECT DISTINCT FINDINGS.EV_ID, FINDINGS.FINDING_DESCRIPTION, 
EVENTS.LIGHT_COND, EVENTS.WX_TEMP, EVENTS.WX_DEW_PT, 
EVENTS.WIND_DIR_DEG, EVENTS.WIND_VEL_KTS, EVENTS.GUST_KTS, 
EVENTS.ALTIMETER 
FROM FINDINGS, EVENTS, AIRCRAFT 
WHERE (((FINDINGS.EV_ID)=[AIRCRAFT].[EV_ID] AND 
(FINDINGS.EV_ID)=[EVENTS].[EV_ID]) AND ((AIRCRAFT.ACFT_CATEGORY) LIKE 
'AIR*')); 
 

Detailed Results from Random Forest Runs 
Airplanes 

No Gusts – ntree 500 
Random Forest output: 
Type of random forest: classification 
Number of trees: 500 
No. of variables tried at each split: 2 
Out-of-bag (OOB) estimate of error rate: 24.39% 
 

Table A-1 Confusion matrix airplanes, ntree 500, no gusts 
 

N x class.error 

N 3963 260 0.06156761 

x 1103 263 0.80746706 
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Fig. A-1 Variable importance plot: airplanes, ntree 500, no gusts 

 

Table A-2 Variable importance measures: airplanes, ntree 500, no gusts 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 11.840187 23.8492606 23.54195 78.80947 

wx_temp 56.976605 -8.3942168 55.818573 377.49762 

wx_dew_pt 48.086505 –15.8939562 41.730455 375.30625 

wind_dir_deg 1.173042 2.093035 2.136593 378.12715 

wind_vel_kts 29.285381 41.6917538 45.632717 338.2876 

altimeter 18.951875 –0.4434568 16.739668 443.92041 

 
No Gusts – ntree 400 

Random Forest output: 
Type of random forest: classification 
Number of trees: 400 
No. of variables tried at each split: 2 
OOB estimate of error rate: 24.23% 
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Table A-3 Confusion matrix for airplanes, ntree 400, no gusts 

 N x class.error 

N 3970 253 0.05991002 

x 1101 265 0.80600293 

 

 

Fig. A-2 Variable importance plot: airplanes, ntree 400, no gusts 

 

Table A-4 Variable importance measures: airplanes, ntree 400, no gusts 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 10.0116 21.8751953 19.742184 80.18966 

wx_temp 47.5407 –7.8439718 46.748625 371.4269 

wx_dew_pt 42.20958 –13.4995938 37.799126 373.95258 

wind_dir_deg 2.66869 0.3804706 2.442168 380.0827 

wind_vel_kts 26.74702 32.0925775 40.623684 341.41796 

altimeter 17.8817 –3.1895253 14.674056 446.21703 
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Gusts – ntree 500 
Random Forest output: 
Type of random forest: classification 
Number of trees: 500 
No. of variables tried at each split: 2 
OOB estimate of error rate: 41.42% 
 

Table A-5 Confusion matrix airplanes, ntree 500, gusts 

 N x class.error 

N 452 182 0.2870662 

x 289 214 0.5745527 

 

 

Fig. A-3 Variable importance plot: airplanes, ntree 500, gusts 
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Table A-6 Variable importance measures: airplanes, ntree 500, gusts 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 2.233281 –1.2191109 0.7422473 13.4635 

wx_temp 11.50686 1.4360709 10.9949025 91.33929 

wx_dew_pt 13.306476 –0.3513214 10.1174796 96.1576 

wind_dir_deg 8.347022 –1.8519558 5.3281705 89.57317 

wind_vel_kts 7.899476 1.8112498 7.8923629 79.14064 

altimeter 4.984241 –8.1366573 –1.3194029 99.07035 

gust_kts 8.767074 2.7485622 9.2469088 84.6994 

 

Gusts – ntree 400 
Random Forest output: 
Type of random forest: classification 
Number of trees: 400 
No. of variables tried at each split: 2 
OOB estimate of error rate: 40.72% 
 

Table A-7 Confusion matrix, airplanes, ntree 400, gusts 

 N x class.error 

N 453 181 0.285489 

x 282 221 0.5606362 
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Fig. A-4 Variable importance plot:-airplanes, ntree 400, gusts 

Table A-8 Variable importance measures: airplanes, ntree 400, gusts 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 3.572651 –0.1039458 2.312476 13.82871 

wx_temp 11.198215 –1.092739 9.084722 92.49765 

wx_dew_pt 11.084761 –2.2840685 8.22982 94.22073 

wind_dir_deg 5.742023 –2.505355 2.552762 89.67124 

wind_vel_kts 6.75407 0.5237188 6.005231 77.31019 

altimeter 3.999004 –7.9153185 –1.808045 101.00583 

gust_kts 8.819424 2.3902855 9.438109 84.37634 

 

No Gusts - No Altimeter 
Random Forest output: 

Type of random forest: classification 
Number of trees: 500 
No. of variables tried at each split: 2 
OOB estimate of error rate: 25.28% 
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Table A-9 Confusion matrix, airplanes, ntree 500, no gusts, no altimeter 

 N x class.error 

N 3873 350 0.08287947 

x 1063 303 0.77818448 
 

 

Fig. A-5 Variable importance plot: airplanes, ntree 500, gusts, no altimeter 

 

Table A-10 Variable importance measures: airplanes, ntree 500, no gusts, no altimeter 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 10.75 18.4658838 19.401291 85.39137 

wx_temp 49.38828 –3.1704462 49.614706 456.58398 

wx_dew_pt 46.49761 –13.7953901 43.423776 463.79049 

wind_dir_deg –4.27994 0.4630378 –3.376186 479.53358 

wind_vel_kts 25.11055 41.233236 43.407036 384.0949 
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Helicopters 

No Gusts – ntree 500 
Random Forest output: 

Type of random forest: classification 
Number of trees: 500 
No. of variables tried at each split: 2 
OOB estimate of error rate: 20.1% 

 

Table A-11 Confusion matrix, helicopters, ntree 500, no gusts 
 

N x class.error 

N 489 20 0.03929273 

x 106 12 0.89830508 

 

 

Fig. A-6 Variable importance measures: helicopter, ntree 500, no gusts 
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Table A-12 Variable importance plot: helicopter, ntree 500, gusts 

Variable N x Mean decrease 
accuracy 

Mean 
decrease Gini 

light_cond 1.91156587 12.975265 8.4309547 13.02388 

wx_temp 13.32815904 –1.692774 12.3363263 34.91327 

wx_dew_pt 15.00538148 –8.915313 10.8841943 36.77802 

wind_dir_deg 0.02346716 –1.89521 –0.8780432 33.71206 

wind_vel_kts 8.2319426 7.010469 10.5067365 33.96037 

altimeter 6.51944018 –5.088066 3.8253575 35.93895 

No Gusts – ntree 400 
Type of random forest: classification 
Number of trees: 400 
No. of variables tried at each split: 2 
OOB estimate of error rate: 20.57 

 

Table A-13 Confusion matrix for helicopter, no gusts, ntree 400 
 

N x class.error 

N 487 22 0.043222 

x 107 11 0.9067797 

 

Table A-14 Variable importance measures: helicopter, ntree 400, no gusts 

Variable N x Mean decrease 
accuracy 

Mean decrease 
Gini 

light_cond 3.761427 11.0426758 9.1891123 13.5171 

wx_temp 12.4511174 –2.2359166 11.6197874 34.62552 

wx_dew_pt 13.1803534 –7.9901741 9.8062402 36.53487 

wind_dir_deg –0.1023798 –0.6490411 –0.2731138 34.02029 

wind_vel_kts 7.3861387 4.6708483 8.5827052 34.25989 

altimeter 6.1154741 –4.1367783 3.627002 35.96782 
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Fig. A-7 Variable importance plot: helicopter, ntree 400, no gusts 

Gusts – ntree 500 
Random Forest Output:  

Type of random forest: classification 
Number of trees: 500 
No. of variables tried at each split: 2 
OOB estimate of error rate: 40.94% 

 

Table A-15 Confusion matrix for helicopter, gusts, ntree 500 

 N x class.error 

N 67 14 0.1728395 

x 38 8 0.826087 
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Table A-16 Importance measures for helicopter, gusts, ntree 500 

Variable N x Mean decrease 
accuracy 

Mean 
decrease Gini 

light_cond 4.5045482 5.2752305 6.39485335 3.104077 

wx_temp 0.6844501 –0.933441 0.03292168 9.075437 

wx_dew_pt 1.501178 –4.8069218 –1.68761907 8.300828 

wind_dir_deg –1.4421245 0.3443367 –0.92445561 10.70617 

wind_vel_kts 0.2616115 0.343606 0.29784493 8.454298 

altimeter –0.5181441 –4.1327118 –2.94821493 9.633624 

gust_kts 0.4900902 2.8823347 1.95880135 8.715406 

 

 

Fig. A-8 Variable importance plot: helicopter, gusts, ntree 500 

Gusts – ntree 400 
Type of random forest: classification 
Number of trees: 400 
No. of variables tried at each split: 2 
OOB estimate of error rate: 42.52% 
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Table A-17 Confusion matrix for helicopter, gusts, ntree 400 

 N x class.error 

N 62 19 0.2345679 

x 35 11 0.7608696 

 

Table A-18 Importance measures for helicopter, gusts, ntree 400 

Variable N x Mean decrease 
accuracy 

Mean 
decrease 

Gini 

light_cond 1.30499145 7.58419 5.6425638 3.040114 

wx_temp –0.07109502 0.8202233 0.4865997 9.281376 

wx_dew_pt 1.17175679 –5.2582878 –1.9722996 8.58466 

wind_dir_deg –1.95085433 1.8220211 –0.3639487 10.759474 

wind_vel_kts –0.3350203 –0.7978229 –0.7744061 8.203409 

altimeter –1.96459161 –3.9434259 –4.1299063 9.362583 

gust_kts 0.06931692 2.4782635 1.2987592 8.66372 

 

 

Fig. A-9 Variable importance plot: helicopter, gusts, ntree 400 
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No Altimeter 
Number of trees: 500 
No. of variables tried at each split: 2 
OOB estimate of error rate: 20.41% 

 

Table A-19 Confusion matrix for helicopter, no gusts, no altimeter, ntree 500 

 N x class.error 
N 485 24 0.04715128 
x 104 14 0.88135593 

 

Table A-20 Variable importance measures for helicopter, no gusts, no altimeter, ntree 500 

Variable N x Mean decrease 
accuracy 

Mean 
decrease Gini 

light_cond 2.1342769 13.2661324 8.5855959 13.80308 
wx_temp 13.0161326 0.6226949 13.2557421 42.05545 

wx_dew_pt 19.1026043 –9.0211285 14.7868566 46.55484 
wind_dir_deg –0.2575318 –1.2728565 –0.8292119 43.8914 
wind_vel_kts 11.1414579 9.3122348 14.2896222 40.22386 

 

 

Fig. A-10 Variable importance plot for helicopter, no gusts, no altimeter, ntree 500  
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List of Symbols, Abbreviations, and Acronyms 

ID identification 

JLENS Joint Land Attack Cruise Missile Defense Elevated Netted 
Sensor System 

MVP most valuable predictor 

NTSB National Transportation Safety Board 

OOB  out of bag 
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